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 Electronic circuits and electronic systems are designed to perform a wide variety 
of tasks.  The performance requirements from task to task are often significantly 
different.  Although the performance requirements vary widely, there are considerable 
benefits from both design and assessment viewpoints of having standard methods for 
characterizing the performance of these systems.  The concepts of transfer characteristics 
and transfer functions are used extensively to characterize these circuits and systems. 
 An electronic system, an electronic circuit, or a more general system that may 
have some or no electrical relationships are often characterized by the transfer functions 
and the transfer characteristics as well and the concepts are universal.  And within  the 
context of electronic circuits and systems, terminology such as circuit, network, 
amplifier, filter, system, architecture, structure, along with several other terms are used 
interchangeably.   The difference between an amplifier, a circuit, a filter, a network,  an 
architecture, or even a system is often only in how the “entity” is intended to be used with 
possible no difference in how the “entity” is characterized or in how it operates.  In what 
follows, these terms will be used interchangeably but the concepts of transfer functions 
and transfer characteristics are universal. 
  

Transfer Characteristics 
 A system with an input XIN and an output XOUT is shown in Fig. 1.  In electrical 
systems the input and output quantities, typically termed signals, are often dependent on a 
single additional input variable, time.  In this case the input and output signals would 
time-dependent voltages or currents.  In Fig. 2, three different methods of indicating a 
system that serves as a voltage amplifier with time-dependent input and output voltages is 
shown.  For simplicity, the notation in part c) of this figure is most commonly used. 

IN OUT

 
Fig. 1 Single-Input Single-Output System 
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Fig. 2   Representations of a Voltage Amplifier 

 
The transfer characteristics of a system is defined to be the pseudo-static relationship 
between the input and output variable.  If the system is a voltage-in, voltage-out system 
we would term this pseudo-static relationship the dc transfer characteristics.  Three 
different transfer characteristics are shown in Fig. 3.  In top part of the figure, the 
relationship between the input and output is a straight line.  In the middle part, it is 
weakly nonlinear.  And, in the bottom part it is highly nonlinear. 
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Fig. 3 Transfer characteristics of linear, weakly nonlinear, and highly nonlinear systems 

 

Linear Systems 
 If the relationship between the input and output can be expressed as  
        (1) OUT INX = KX
where K is a constant, we say the system is linear.  Actually, the class of linear systems 
extends somewhat beyond the case where K is constant.  The following definition defines 
a linear system: 
 
Definition:   A system is linear iff 

( )OUT 1 IN1 2 IN2 OUT 1 IN1 OUT 2 IN2X a X +a X  = X (a X )+X (a X )       (2) 
where a1 and a2 are any real numbers and XIN1 and XIN2 are any two inputs. 
 
With this definition of a linear system, the relationship of (1) is satisfied.  But the I/O 
characteristics of many linear systems do not satisfy (1). For example, if sinusoidal inputs 
at two different frequencies are applied to a linear system, the outputs due to each will 
also be a sinusoid but the relative magnitude of the input and output sinusoidal signals 
may be different.  If a system is linear, the relationship of (1) is satisfied for dc inputs.  
But, it is possible to have a system that is nonlinear where (1) is satisfied for dc inputs. 

Transfer Functions 
 Any linear system is characterized by a transfer function.  A linear system also 
has transfer characteristics.  But, if a system is not linear, the system does not have a 
transfer function.  The following definition will be used to define a transfer function. 
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Definition:   The transfer function, T(s),  of a linear system with input XIN and 
output XOUT is given by the expression 

  ( ) ( )
( )

 OUT

IN

s
T s =

s
X
X 

        (3) 

where  XOUT(s) and XIN(s) are the Laplace transforms of the output and input. 
 
Although the input signal and correspondingly the output signal can take on arbitrary 
values, the ratio of the Laplace Transforms of these two quantities is not dependent upon 
the particular input that is applied provided the system is linear. 
 The input/output relationship defined by (3) is often termed a frequency domain 
characterization of the circuit  The relationship between the actual input/output and the 
frequency domain input/output is depicted in Fig. 4.  
 

 
Fig. 4 Time-domain and frequency-domain transformations 

 
The frequency domain characterization of a linear system and correspondingly the 
transfer function is of particular use in determining the sinusoidal steady state response of 
the network.  A key theorem, and one of the major reasons that the frequency domain was 
studied in EE 201,  follows. 
 
Theorem 1:   If a linear network has transfer function T(s) and input given by the 
expression   XIN(t)=XMsin(ωt + θ), then the steady state output is given by 
  ( ) ( ) ( )( )OUT MX t X T jω sin ωt + θ + T jω= ∠       (4) 
 
This theorem states the steady state output is a sinusoid of the same frequency as the 
excitation but scaled in magnitude by the magnitude of the transfer function evaluated at 
s=jω and shifted in phase by the phase of the transfer function evaluated at s=jω. 
 Although this theorem is useful, there are still some challenges that need to be 
overcome to simplify the sinusoidal steady state analysis of linear networks.  The 
challenge is in obtaining the transfer function T(s).  The straightforward way to obtain 
T(s) from (3) is to write a set of  differential equations relating the input and output 
variables of a circuit and then take the Laplace Transform of this set of equations to 
obtain a set of transformed equations.  These equations become algebraic and can be 
solved to obtain T(s).  But this process is still very tedious.  A more practical approach is 
to transform the time domain circuit itself to a frequency domain circuit and then analyze 
the frequency domain circuit.  This circumvents the need for writing any differential 
equations.  
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 Two methods of obtaining the transfer function will be described here.  One is a 
transformation of the circuit into what is often termed an s-domain or “Laplace domain” 
circuit.   The other uses phasors.  The methods are almost identical but circuits and 
electronics textbooks typically treat these as different approaches so both will be 
described. 
 

s-domain circuit analysis 
 
 The concept of transforming the time-domain circuit to the s-domain circuit is 
depicted in Fig. 5.  The s-Domain Circuit is topologically identical to the  
 

 
Fig. 5      Transformation from time-domain circuit  to s-domain circuit 

 
time-domain circuit, the only difference is how the circuit elements are modeled.  All 
elements in the two circuits are identical except for the capacitors and inductors. The 
inductors and capacitors are simply replaced with impedances given in Fig 6. 
 

1
sC

sL
 

 
Fig.6   Impedances of Inductors and Capacitors in s-domain network 

 
Mathematically, these mappings of an element to an impedance can be expressed as 
  

  1C
sC

→       (5) 

        (6) L sL→
After the s-domain circuit is obtained, it can be analyzed using standard circuit analysis 
techniques to obtain the transfer function T(s).  Once T(s) is obtained, Theorem 1 can be 
used to obtain the sinusoidal steady state response. 
 

Phasor-domain circuit analysis 
 
The concept of transforming a circuit to the phasor-domain is shown in Fig. 7.     . 
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Fig. 7   Transformation from time-domain circuit to  phasor-domain circuit 

 
The phasor-domain circuit is also topologically identical to the time-domain circuit, the 
only difference being in how the circuit elements are modeled.  All elements are the same 
except for the inductors and capacitors.  The inductors and capacitors are simply replaced 
with impedances given in Fig.8. 
 
 

1
jωC

jωL
 

 
Fig.8   Impedances of Inductors and Capacitors in phasor-domain network 

 
Mathematically, these mappings of an element to an impedance can be expressed as 
  

     1C
jωC

→     (7) 

         (8) L jωL→
After the phasor-domain circuit is obtained, it can be analyzed using standard circuit 
analysis techniques to obtain the phasor-domain transfer function TP(jω).  Whereas the 
transfer function T(s) includes the variable s and thus is neither a real or complex 
quantity until further information about s is given, the phasor-domain transfer function is 
a complex quantity as are all impedances in the phasor-domain circuit.  As such, 
manipulations of equations leading to TP(jω) can be made as part of the analysis process.  
Unfortunately this additional flexibility, when exercised,  often causes unnecessary 
arithmetic calculations when calculating TP(jω).  
 Since the phasor-domain circuit and the s-domain circuits differ only in how the 
energy storage elements are characterized and since this characterization is  similar, it 
follows that 

    ( ) ( ) ( )PT jω T s T jω
s jω=

= =    (9) 

Thus, the sinusoidal steady state response can also be obtained from the phasor-domain 
transfer function TP(jω).  From (), it is apparent that TP(jω) can be readily obtained from 
T(s).  Obtaining T(s) from TP(jω) is not so easy to do but seldom would one want to do 
this anyway. 
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Relationship between time-domain, s-domain and phasor-domain 
analysis 
 
 The process of obtaining the sinusoidal steady-state response has been 
discussed using  the concept of the transfer function, Theorem 1,  and  either the s-
domain circuit or the phasor-domain circuit.  In this section, the relationship between 
these two methods of analysis will be contrasted with using the time domain analysis. 
The block diagram in Fig.    depicts three methods for obtaining the sinusoidal steady 
state response of a linear system.  The central path shows the time-domain approach.  It 
involves writing the differential equations that characterize the actual circuit and solving 
these equations to obtain the response.  The left path uses the s-domain approach and the 
right path uses the phasor-domain approach.  The s-domain approach and the time-
domain approach can be used even if the input is not a sinusoid though the analysis 
becomes more complicated.   The phasor-domain approach is only applicable to when the 
input is a sinusoidal function and the steady-state response is desired. 
 
 

 
  

Fig.9 Time-domain, s-domain and phasor-domain analysis of linear circuits 
 
It should be noted in the block diagram that the last blocks, the inverse transforms, were 
not discussed in the previous section.  The inverse transforms needed to obtain the 
sinusoidal steady state response are provided by Theorem 1 and the inverse transforms 
are given by (4). 

Example – The three approaches to sinusoidal steady state 
analysis  
 

Page 7 of 14 



 Consider the circuit if Fig. 10.  We will obtain the sinusoidal steady state response 
using the three methods of analysis, the s-domain approach, the phasor-domain approach, 
and the time-domain approach.   In all cases, it will be assumed that  
   ( )IN MV V sin ωt+θ=       (10) 
and the goal is to obtain the steady state response VOUT(t). 
    

 

 
Fig. 10 Example time-domain circuit 

 

s-domain analysis 
 From Fig.6 the s-domain equivalent of the circuit of Fig.10 can be obtained.  This 
is shown in Fig. 11. 
 
 

1
sC

 
Fig. 11 s-domain circhit 

 
It follows from KCL by summing currents at the output node that 
 

 OUT  IN
1sC+  = 
R R

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

V V
1 ⎞
⎟
⎠

       (11) 

Solving for VOUT in terms of VIN, we obtain the transfer function 

 ( ) 1T s =
1+RCs

        (12) 
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Evaluating at s= jω we obtain 

 ( ) 1T jω =
1+jωRC

        (13) 

The magnitude and phase of T(jω) are given by 

 ( )
( )

( ) (1tan
2

1T jω = T jω ωRC
1+ ωRC

−∠ = − )     (14) 

It thus follows from (10) and Theorem 1 that the steady state output is given by 

  ( )
( )

( )( )1tanOUT M 2

1V t V sin ωt + θ ωRC
1+ ωRC

−
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

  (15) 

phasor-domain analysis 
 From Fig.8,  the phasor-domain equivalent of the circuit of Fig.10 can be 
obtained.  This is shown in Fig. 12 
 

1
jωC

 
Fig.12   Phasor-domain circuit 

 
 
It follows from KCL by summing currents at the output node that 
 

 OUT  IN
1jωC+  = 
R R

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

V V
1 ⎞
⎟
⎠

       (16) 

Solving for  in terms of , we obtain the phasor-domain transfer function OUT V INV

 ( )P
1T jω =

1+jωRC
        (17) 

The magnitude and phase of TP(jω) are given by 

 ( )
( )

( ) (1tanP P2

1T jω = T jω ωRC
1+ ωRC

−∠ = − )  (18) 

It thus follows from (10), (9)  and Theorem 1 that the steady state output is given by 
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  ( )
( )

( )( )1tanOUT M 2

1V t V sin ωt + θ ωRC
1+ ωRC

−
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

  (19) 

As expected, it can be seen by comparing the results in (15) and (19) that the phasor-
domain and s-domain analysis results are identical. 

time-domain analysis 
The time-domain analysis involves writing and solving the differential equations that 
describe the circuit.  From Fig.8,  we obtain the following three equations. 
 

 

( )

( )

( )

OUT

IN OUT

IN M

Vi t C
t

V -V i t R

V V sin ωt+θ

d
d

⎫= ⎪
⎪⎪= ⎬
⎪
⎪

= ⎪⎭

        (20) 

It remains to solve this set of three equations.  One way to solve this simultaneous set of 
differential equations is to use Laplace transform methods.  Taking the Laplace 
Transform of these three equations, we obtain the new set of three equations 
 

 
( )sin

 OUT

  IN   OUT

 IN M 2 2

sC
- R

θ s ωcosθ
V

s ω

⎫
⎪=
⎪⎪= ⎬
⎪+ ⎪=
⎪+ ⎭

I V

V V I

V

      (21) 

 
Solving this set of equations, we obtain the VOUT as given by 
 

 
( )sin 1

1  OUT M 2 2

θ s ωcosθ
V

s ω sRC
+⎡ ⎤ ⎛ ⎞= ⎢ ⎥ ⎜+ +⎝ ⎠⎣ ⎦

V ⎟     (22) 

It remains to take the inverse Laplace transform of   VOUT to obtain  where the 
“~” operator is shown to indicate that the inverse Laplace transform will contain both a 
forced and natural response.  The steady state response, VOUT(t), is the forced response. 

( )OUTV t

From a straightforward but tedious calculation, it follows that  
 

( )
( ) ( )

( )( )1tan
t- RC

OUT M M2 2

sinθ ωRC 1V t V 1- e V sin ωt + θ ωRC
tanθRC 1+ ωRC

−
⎡ ⎤⎛ ⎞⎡ ⎤⎛ ⎞ ⎢ ⎥⎜ ⎟= + −⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦

 (23) 
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The first term in [] on in this expression is the natural response and vanishes at .  
The forced response is the second term in [].  It thus follows that the steady state response 
is given by 

t →∞

 ( )
( )

(( 1tanOUT M 2

1V t V sin ωt + θ ωRC
1+ ωRC

−
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

))−     (24) 

As expected, this is the same solution as was obtained from the s-domain analysis and the 
phasor-domain analysis. 
 

Determining which analysis method is most useful 
 It should be apparent from this simple example that the total effort in obtaining 
the steady state response using either of the frequency domain approaches is much less 
than following the time domain approach and for more complicated circuits, the 
difference in effort will be even much larger.  The issue of whether to use the s-domain or 
the phasor-domain analysis remains.   The electronics community almost exclusively uses 
the s-domain analysis.  There are probably several reasons for this but one of the most 
important, though not apparent from this simple example, is the amount of manipulative 
detail required with the two approaches.  Since magnitude and phase operators are not 
defined in the s-domain analysis, one can not make intermediate “simplifications” 
whereas all equations present in a phasor-domain analysis are complex quantities and 
thus intermediate manipulations are possible and often implemented.  Although this may 
appear to simplify the analysis, in actuality, unnecessary manipulations are often made 
and these intermediate manipulations thus often increase the effort required to solve the 
system of equations.  A second is simply the number of characters that must be written 
when analyzing a circuit.  It requires two characters to represent either an inductor or a 
capacitor in the s-domain and it requires three characters to represent these elements in 
the phasor domain.  This actually results in considerably longer expressions when doing 
hand calculations in the phasor domain.  A third reason also favors the s-domain analysis. 
By multiplying the transfer function T(s)  by the Laplace transform of the excitation, the 
Laplace transform of the output can be obtained for arbitrary inputs and thus the s-
domain approach can be used to obtain more than just the sinusoidal steady state 
response.  In the latter case, there are some additional considerations that will not be 
discussed in detail here but they are associated with requiring the appropriate provisions 
for the initial conditions on all energy storage elements, specifically the inductors and 
capacitors.   The  s-domain analysis method,  which is dominant in the electronics 
community, has been extracted from Fig. 9 and appears in Fig. 13. 
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Fig. 13 s-domain approach to analysis of linear networks 

 

Magnitude and Phase Plots and Amplifier/Filter Nomenclature 
 If a linear circuit has a sinusoidal excitation, it follows form Theorem that the 
magnitude and phase of the transfer function evaluated at the frequency of the excitation 
give the magnitude of the gain and the phase shift of the output relative to the input. 
Plots of the magnitude and phase are often used to visually show how gain and phase 
shift vary with frequency.   These magnitude and phase plots are often termed Bode plots.  
From the magnitude and phase plots, the sinusoidal steady state response can be readily 
obtained for any frequency of the input. 
 The transfer function for the circuit of  Fig. 10 was given in equation (12).  The 
corresponding magnitude and phase for this transfer function  are given by equation (14).  
The magnitude and phase are plotted in Fig.14.   From this magnitude plot, it can be  
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( )T jω
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1
RC

1
2

( )T jω∠
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Fig. 14 Transfer function magnitude and phase plots for circuit of Fig. 10 

 
seen that the magnitude of the gain is constant and nearly equal to 1 at low frequencies 
and drops at the frequency increases.  The region where the gain is large and nearly 
constant is termed the pass band of the amplifier and the region where the gain is very 
low is termed the stop band of the filter.  The transition between the passband and the 
stop band is not real abrupt in this circuit but it occurs around ω = (RC)-1.   A circuit that 
passes sinusoids at low frequencies but blocks sinusoids at high frequency is termed a 
lowpass circuit.  Some may term this a  lowpass amplifier or a lowpass filter. 
 Several  transfer function characteristics that vary intentionally with frequency 
that describe specific magnitude shapes are the lowpass, bandpass, highpass, band-reject, 
and notch functions.  When circuits are designed to intentionally have these types of 
magnitude characteristics, the circuits are typically called filters.  The transfer function 
magnitude for representative filters in each of these classes are shown in Fig. 15 .  It 
should be noted that each of these classes of filters is large and that the magnitude 
responses shown in Fig.15   are simply representative characteristics.  The phase response 
for these classical filter shapes is also of interest but is not shown in the figure. 
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( )T jω

( )T jω

( )T jω

( )T jω

( )T jω

( )T jω

 
Fig. 15 Representative filter characteristics for lowpass, bandpass, highpass,  

bandreject and notch filters 
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